PengertianInstrumen Penelitian Menurut Para Ahli. Singkatnya, instrumen penelitian adalah alat bantu yang digunakan untuk mendapatkan data penelitian. Tanpa instrumen, kamu tidak akan bisa mengumpulkan data yang diperlukan dalam penelitian. Bila datanya tidak ada, maka penelitian pun tidak akan bisa dilakukan. Iamemperihatkan bahwa bakteri tertentu mampu menambah nitrogen (N 2) dari udara yang sangat banyak terdapat disitu, dan mengubahnya menjadi senyawa nitrogen yang dapat dimanfaatkan oleh tumbuhan sebagai nutrien. Tahun 1901, Martinus Beijerinck (1851-1931), seorang mikrobiologiwan termashur dari Belanda, menemukan bakteri-bakteri lain dalam d peneliti dapat mengubah pertanyaan kuesioner kapan saja e. peneliti dapat melihat konsistensi jawaban responden 8. Berikut ini yang tidak termasuk kriteria jenis observasi yang baik yaitu a. pengamatan harus dilakukan dalam jangka waktu yang lama b. pengamatan dapat dicek dan dikontrol c. pencatatan hasil pengamatan yang sistematis bakteriprobiotik tersebut terhadap kesehatan manusia. 6. dilakukan secara teratur sebanyak 100-150 ml produk bakteri tertentu. Berbagaijenis penelitian dilakukan untuk menjawab pertanyaan tersebut. Hingga pada akhirnya seorang peneliti menemukan makhluk yang tidak kasat mata yang disebut mikroorganisme. Peneliti lain merasa tertarik dengan penemuan tersebut, maka mereka melakukan penelitian tentang bentuk, sifat dan karakteristik makhluk kecil itu. DmOI5. MDMaya D21 Januari 2020 2217BerandaUTBK/SNBTMatematikaseorang peneliti melakukan pengamatan terhadap bak...MDMaya D21 Januari 2020 2217Pertanyaanseorang peneliti melakukan pengamatan terhadap bakteri tertentu. setiap 1/2 hari bakteri membelah diri menjadi dua. pada awal pengamatan terdapat 2 bakteri. jika setiap 2 hari 1/4 dari jumlah bakteri mati, banyak bakteri setelah tiga hari adalah581Mau jawaban yang terverifikasi?Tanya ke ForumBiar Robosquad lain yang jawab soal kamuRoboguru PlusDapatkan pembahasan soal ga pake lama, langsung dari Tutor!Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS! Kelas 11 SMABarisanPertumbuhanSeorang peneliti melakukan pengamatan terhadap bakteri tertentu. Setiap 1/2 hari, bakteri membelah diri menjadi dua. Jika awal pengamatan terdapat 16 bakteri dan tiap 2 hari 1/4 dari jumlah bakteri mati, maka jumlah bakteri setelah 3 hari adalah....PertumbuhanBarisanALJABARMatematikaRekomendasi video solusi lainnya0216Bakteri jenis X berkembang biak menjadi dua kali lipat se...0536Seorang peneliti mengamati perkembangbiakan bakteri pada ...0152Pak Arga membeli tanah seluas 150 m^2 pada tahun 2010 den...0215Terdapat sekumpulan bakteri, setiap bakteri membelah diri...Teks videoIni kita memiliki pertanyaan mengenai deret bilangan pada deret ini kita diberikan suatu syarat-syarat tertentu untuk deretnya maka pertama-tama kita harus Tuliskan syarat-syarat yang lalu kita akan hitung Bagaimana jumlah bakteri setelah 3 hari maka pertama-tama disini kita lihat bahwa setiap setengah hari bakteri membelah diri menjadi dua maka disini kita akan Tuliskan setiap setengah hari maka dikali 2 selanjutnya di sini Kita juga mendapatkan jika pengamatan bakteri ada 16 maka kita Tuliskan di sini 16 pada hari ke-0 dan tiap 2 hari 1/4 dari jumlah bakteri mati maka disini adalah tiap 2 maka dia kita kurangi dengan seperempat di mana ini itu adalah Jumlah bakteri Nya maka disini kita hitung saja. Berapa banyak tab yang kita perlukan? Mencapai 3 hari dimana setiap itu berisi setengah hari maka dari nol lalu setengah lalu 1 lalu satu setengah Lalu 2 lalu dua setengah dan baru yang ke tiga hari yang ketiga maka selanjutnya disini kita akan mengisi tabel di sini maka berikutnya dari 16 kita akan kalikan dengan 2 menjadi 32 lalu kita kalikan dengan 2 lagi menjadi 64 dikalikan dengan 2 lagi menjadi 128 dan kita kalikan 2 lagi menjadi 256 Di mana kalian lihat di sini pada hari kedua atau 32 hari itu akan berkurang 1 per 4 n, maka di sini nilainya akan menjadi 256 dikurangi 1 per 4 dari 256 atau disini kita dapat Tuliskan 1 dikurangi 1 per 4 itu adalah 3 per 4 maka kita Tuliskan 3 per 4 x 256 singgah disini nilainya adalah 192 dari bakterinya. maka untuk melanjutkan ke step yang berikutnya kita akan mengalikan dari yang 192 disini maka dari 192 kita kalikan dengan 2 nilainya akan menjadi 384 dan kita kalikan dengan 2 lagi nilainya akan menjadi 768 maka pada hari ketiga kita akan dapati 768 bakteri atau sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Banyaknya bakteri pada saat tertentu pada soal di atas mempunyai pola barisan geometri. Pada awal pengamatan ada bakteri, sehingga banyak bakteri pada pembelahan pertama didapat Selama hari maka bakteri akan mengalami sebanyak kali pembelahan. Rumus suku ke- pada barisan geometri adalah Sehingga Karena setelah 2 hari dari jumlah bakteri mati sehingga sisa bakteri pada hari ke- adalah Dari hari ke- sampai hari ke- bakteri mengalami kali pembelahan sehingga jumlah bakteri menjadi Jadi, banyak bakteri pada hari ke- adalah bakteri. Mahasiswa/Alumni Universitas Jember26 Februari 2022 1052Halo Cut, kakak bantu jawab ya Jawaban dari pertanyaan di atas adalah 96. Suku ke - n barisan geometri dirumuskan Un = ar^n -1 Keterangan Un suku ke - n barisan geometri a suku pertama r rasio n banyaknya suku Diketahui a = 2 r = 2 Pada hari ke - 2 dengan n = 5, banyaknya bakteri yaitu Un = ar^n -1 U4 = 2 . 2^5 - 1 U4 = 2 . 2^4 U4 = 2 . 16 U4 = 32 Setiap 2 hari sebanyak 1/4 bakteri mati, sehingga pada hari ke - 2 sisa bakteri hidup yaitu Sisa bakteri yang hidup = 1 -1/4 . Banyaknya bakteri Sisa bakteri yang hidup = 3/4 . 32 Sisa bakteri yang hidup = 24 Kemudian pada hari ke - 3 dengan n = 3 karena dan a = 24 banyaknya bakteri yaitu Un = ar^3 -1 U3 = 24 . 23 - 1 U3 = 24 . 22 U3 = 24 . 4 U3 = 96 Jadi banyaknya bakteri pada hari ke - 3 adalah 96. Semoga membantu ya, semangat belajar Mahasiswa/Alumni Institut Pertanian Bogor26 November 2021 2036Halo Kasih G, kakak bantu jawab ya.... Jawaban yang benar untuk pertanyaan tersebut adalah A. Perhatikan penjelasan berikut ini! Banyaknya bakteri pada saat tertentu pada soal di atas mempunyai pola barisan geometri. Pada awal pengamatan ada 20 bakteri, sehingga banyak bakteri pada pembelahan pertama didapat a=U1=20 bakteri r = 2 setiap 15 menit Selama 1 jam maka bakteri akan mengalami sebanyak 1 jam 15 menit yaitu 4 kali pembelahan. Rumus suku ke-n pada barisan geometri adalah Un= ar^n-1 Sehingga U4=20 x 2^4-1=20 x 2^3= 20 x 8=160 bakteri karena setiap satu jam sebanyak seperempat dari populasi bakteri tersebut dimatikan, maka sisa populas bakteri setelah 1 jam adalah 1 - 1/4 x 160 = 120 bakteri Dari 1 jam pertama sampai 2 jam pertama bakteri mengalami 4 kali pembelahan sehingga jumlah bakteri menjadi 120 x 2^4=120 x 2^4=120 x 16 = bakteri karena setiap satu jam sebanyak seperempat dari populasi bakteri tersebut dimatikan, maka sisa populas bakteri setelah 2 jam adalah 1 - 1/4 x = bakteri Dari 2 jam pertama sampai 2,5 jam pertama bakteri mengalami 2 kali pembelahan sehingga jumlah bakteri menjadi x 2^2= x 4 = bakteri Dengan demikian, banyaknya bakteri yang masih hidup setelah 2,5 jam adalah bakteri. Oleh karena itu, jawaban yang benar adalah A.

seorang peneliti melakukan pengamatan terhadap bakteri tertentu